Algebraic Stability of Zigzag Persistence Modules
نویسندگان
چکیده
The stability theorem for persistent homology is a central result in topological data analysis. While the original formulation of the result concerns the persistence barcodes of R-valued functions, the result was later cast in a more general algebraic form, in the language of persistence modules and interleavings. In this paper, we establish an analogue of this algebraic stability theorem for zigzag persistence modules. To do so, we functorially extend each zigzag persistence module to a two-dimensional persistence module, and establish an algebraic stability theorem for these extensions. One part of our argument yields a stability result for free two-dimensional persistence modules. As an application of our main theorem, we strengthen a result of Bauer et al. on the stability of the persistent homology of Reeb graphs. Our main result also yields an alternative proof of the stability theorem for level set persistent homology of Carlsson et al.
منابع مشابه
Stability of higher-dimensional interval decomposable persistence modules
The algebraic stability theorem for pointwise finite dimensional (p.f.d.) R-persistence modules is a central result in the theory of stability for persistence modules. We present a stability theorem for n-dimensional rectangle decomposable p.f.d. persistence modules up to a constant (2n− 1) that is a generalization of the algebraic stability theorem. We give an example to show that the bound ca...
متن کاملInduced matchings and the algebraic stability of persistence barcodes
We define a simple, explicit map sending a morphism f : M → N of pointwise finite dimensional persistence modules to a matching between the barcodes of M and N . Our main result is that, in a precise sense, the quality of this matching is tightly controlled by the lengths of the longest intervals in the barcodes of ker f and coker f . As an immediate corollary, we obtain a new proof of the alge...
متن کاملAN INTEGRAL DEPENDENCE IN MODULES OVER COMMUTATIVE RINGS
In this paper, we give a generalization of the integral dependence from rings to modules. We study the stability of the integral closure with respect to various module theoretic constructions. Moreover, we introduce the notion of integral extension of a module and prove the Lying over, Going up and Going down theorems for modules.
متن کاملMultidimensional Interleavings and Applications to Topological Inference
This thesis concerns the theoretical foundations of persistence-based topological data analysis. The primary focus of the work is on the development of theory of topological inference in the multidimensional persistence setting, where the set of available theoretical and algorithmic tools has remained comparatively underdeveloped, relative to the 1-D persistence setting. The thesis establishes ...
متن کاملCat 2015 Topological Data Analysis: New Developments and Challenges
s _______________________________________________________________________________________ Ulrich Bauer Title:Induced Matchings and the Algebraic Stability of persistence Barcode Abstract: We define a simple, explicit map sending a morphism f : M → N of pointwise finite dimensional persistence modules to a matching between the barcodes of M and N. Our main result is that, in a precise sense, the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1604.00655 شماره
صفحات -
تاریخ انتشار 2016